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Abstract
Every irreducible finite-dimensional representation of the quantized enveloping
algebra Uq(gln) can be extended to the quantum affine algebra Uq(ĝln) via
the evaluation homomorphism. We give in explicit form the necessary and
sufficient conditions for irreducibility of tensor products of such evaluation
modules.

PACS numbers: 02.20.Sv, 02.10.Hh

1. Introduction

Let g be a simple Lie algebra over C . Finite-dimensional irreducible representations of the
corresponding quantum affine algebra Uq(ĝ) were classified by Chari and Pressley [3]; see
also [4, chapter 12]. The representations are parametrized by n-tuples of monic polynomials
(P1(u), . . . , Pn(u)), where n is the rank of g. Moreover, every such representation is
isomorphic to a subquotient of a tensor product of the form

La1

(
ωi1

) ⊗ · · · ⊗ Lak

(
ωik

)
(1.1)

where La(ωi) denotes the so-called fundamental representation of Uq(ĝ) which corresponds
to the n-tuple of polynomials with Pj (u) = 1 for all j �= i and Pi(u) = u − a, where a ∈ C

and ωi is a fundamental weight. In general, the structure of the tensor product module (1.1)
appears to be rather complicated. Only recently, irreducibility conditions for this module were
found. These conditions were first conjectured by Akasaka and Kashiwara in [1] and proved
there in the cases where ĝ is of type A(1) or C(1). In some other cases the conjecture was
proved in different ways by Frenkel–Mukhin [8], Varagnolo–Vasserot [29] before the general
conjecture was settled by Kashiwara [13]. This result was generalized by Chari [2] who gave,
in particular, irreducibility conditions for tensor products of the representations corresponding
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to n-tuples of polynomials (P1(u), . . . , Pn(u)) such that Pj (u) = 1 for all j �= i and the roots
of Pi(u) form a ‘q-string’.

In the case where the Lie algebra g is of type A, the corresponding quantum affine algebra
admits a class of evaluation modules. Namely, as shown by Jimbo [11], there exists a family
of algebra homomorphisms eva : Uq(ĝ) → Uq(g) which allows one to extend any finite-
dimensional irreducible representation L(λ) of Uq(g) to a module La(λ) over Uq(ĝ), where
λ is the highest weight of L(λ) and a ∈ C . In particular, if λ = ωi is a fundamental weight,
the evaluation module coincides with the fundamental representation La(ωi). Furthermore,
any finite-dimensional irreducible representation of Uq(ĝ) is isomorphic to a subquotient of a
tensor product module

La1(λ
(1)) ⊗ · · · ⊗ Lak

(λ(k)) (1.2)

see e.g. [4, section 12.2]. Irreducible tensor products of form (1.2) thus provide an explicit
realization of a wider class of representations in comparison with modules (1.1). In fact, in
the case of g = sl2 every type 1 irreducible finite-dimensional representation of Uq(ŝl2) is
isomorphic to a module of form (1.2); see [4, section 12.2].

In this paper, we prove necessary and sufficient conditions for irreducibility of the tensor
product (1.2). It is more convenient for us to work with the quantum affine algebra Uq(ĝln)

instead of Uq(ŝln). The results can be easily reformulated for the latter algebra as well.
Our starting point is the important binary property established by Nazarov and Tarasov [24]
with the use of an observation made by Kitanine, Maillet and Terras [14, 16]. Namely,
representation (1.2) is irreducible if and only if for all i < j the modules Lai

(λ(i))⊗ Laj
(λ(j))

are irreducible. Therefore, we only need to find an irreducibility criterion for the case
of k = 2 factors in (1.2). In fact, the binary property is proved in [24] in the Yangian
context. An explicit formulation for the quantum affine algebra case can be found in Leclerc,
Nazarov and Thibon [15]. A general binary cyclicity property was established by Chari [2]
for tensor products of arbitrary irreducible finite-dimensional representations of Uq(ĝ) with
g of any type. An irreducibility criterion for the induction products of evaluation modules
over the affine Hecke algebras of type A was given in [15]. It implies an irreducibility
criterion for the Uq(ĝln)-module La(λ) ⊗ Lb(µ) where the highest weights satisfy some extra
conditions: assuming that λ and µ are partitions (one may do this without loss of generality),
one should require that the sum of the lengths of λ and µ does not exceed n. In the case
where λ and µ are multiples of fundamental weights, the irreducibility conditions are given by
Chari [2].

The same kind of irreducibility questions can be posed for the Yangians Y(g); see e.g.
[4, section 12.1]. An irreducibility criterion of the tensor product of two arbitrary evaluation
modules La(λ) ⊗ Lb(µ) over the Yangian Y(gln) is given in [19]. The conditions on λ and
µ essentially coincide with those of [15]. Some particular cases of this criterion were also
established in [23]. It has been known as a ‘folklore theorem’ that the finite-dimensional
representation theories for the Yangian and the quantum affine algebras are essentially the
same. A rigorous result in that direction was recently proved by Varagnolo [28]. It allows one
to establish an irreducibility criterion for the quantum affine algebras by using the Yangian
criterion of [19]. However, the proof in [28] uses rather involved geometric arguments.
The aim of this paper is to give an independent direct proof of the irreducibility criterion
appropriately modifying the arguments of [19]. In particular, this requires a development of
a q-analogue of the quantum minor techniques employed in [19]. This provides a quantum
minor realization of the lowering operators for the quantized algebra Uq(gln) and allows
a new derivation of the q-analogue of the Gelfand–Tsetlin formulae; cf Jimbo [12], Ueno,
Takebayashi and Shibukawa [27], Nazarov and Tarasov [21], Tolstoy [26].
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2. Quantized algebras and evaluation modules

Fix a complex parameter q which is nonzero and not a root of unity. Following Jimbo [11], we
introduce the q-analogue Uq(gln) of the universal enveloping algebra U(gln) as an associative
algebra generated by the elements t1, . . . , tn, t

−1
1 , . . . , t−1

n , e1, . . . , en−1 and f1, . . . , fn−1 with
the defining relations

ti tj = tj ti ti t
−1
i = t−1

i ti = 1

tiej t
−1
i = ej qδij −δi,j+1 tifj t

−1
i = fj q−δij +δi,j+1

[ei, fj ] = ki − k−1
i

q − q−1
δij with ki = ti t

−1
i+1

[ei, ej ] = [fi, fj ] = 0 if |i − j | > 1
[ei, [ei±1, ei]q]q = [fi, [fi±1, fi]q]q = 0

(2.1)

where we have used the notation [a, b]ζ = ab − ζba. The q-analogues of the root vectors are
defined inductively by

ei,i+1 = ei ei+1,i = fi

eij = [eik, ekj ]q for i < k < j

eij = [eik, ekj ]q−1 for i > k > j.

(2.2)

We shall also use an R-matrix presentation of the algebra Uq(gln); see e.g. [11] and [25].
Consider the R-matrix

R = q
∑

i

Eii ⊗ Eii +
∑
i �=j

Eii ⊗ Ejj + (q − q−1)
∑
i<j

Eij ⊗ Eji (2.3)

which is an element of End C
n ⊗ End C

n, where the Eij denote the standard matrix units and
the indices run over the set {1, . . . , n}. The quantized enveloping algebra Uq(gln) is generated
by the elements tij and t̄ij with 1 � i, j � n subject to the relations

tij = t̄j i = 0 1 � i < j � n

tii t̄ ii = t̄ ii tii = 1 1 � i � n

RT1T2 = T2T1R RT̄ 1T̄ 2 = T̄ 2T̄ 1R RT̄ 1T2 = T2T̄ 1R.

(2.4)

Here T and T̄ are the matrices

T =
∑
i,j

tij ⊗ Eij T̄ =
∑
i,j

T̄ ij ⊗ Eij (2.5)

which are regarded as elements of the algebra Uq(gln) ⊗ End C
n. Both sides of each of the

R-matrix relations in (2.4) are elements of Uq(gln) ⊗ End C
n ⊗ End C

n and the subscripts of
T and T̄ indicate the copies of End C

n where T or T̄ acts; e.g. T1 = T ⊗ 1. An isomorphism
between the two presentations is given by the formulae

ti �→ tii t−1
i �→ t̄ ii ei �→ − t̄ i,i+1tii

q − q−1
fi �→ t̄ ii ti+1,i

q − q−1
. (2.6)

We shall identify the corresponding elements of Uq(gln) via this isomorphism.
We now introduce the quantum affine algebra Uq(ĝln) following [25]; see also [6, 9]. By

definition, Uq(ĝln) has countably many generators t
(r)
ij and t̄

(r)
ij where 1 � i, j � n and r runs

over nonnegative integers. They are combined into the matrices

T (u) =
n∑

i,j=1

tij (u) ⊗ Eij T̄ (u) =
n∑

i,j=1

t̄ ij (u) ⊗ Eij (2.7)
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where tij (u) and t̄ ij (u) are formal series in u−1 and u, respectively:

tij (u) =
∞∑

r=0

t
(r)
ij u−r t̄ ij (u) =

∞∑
r=0

t̄
(r)
ij ur . (2.8)

The defining relations are

t
(0)
ij = t̄

(0)
j i = 0 1 � i < j � n

t
(0)
ii t̄

(0)
ii = t̄

(0)
ii t

(0)
ii = 1 1 � i � n

R(u, v)T1(u)T2(v) = T2(v)T1(u)R(u, v)

R(u, v)T̄ 1(u)T̄ 2(v) = T̄ 2(v)T̄ 1(u)R(u, v)

R(u, v)T̄ 1(u)T2(v) = T2(v)T̄ 1(u)R(u, v).

(2.9)

Here R(u, v) is the trigonometric R-matrix given by

R(u, v) = (u − v)
∑
i �=j

Eii ⊗ Ejj + (q−1u − q v)
∑

i

Eii ⊗ Eii

+ (q−1 − q)u
∑
i>j

Eij ⊗ Eji + (q−1 − q)v
∑
i<j

Eij ⊗ Eji (2.10)

where the subscripts of T (u) and T̄ (u) are interpreted in the same way as in (2.4).

Remark 2.1. It is apparently more common to use the name quantum affine algebra and
notation Uq(ĝln) for the central extension of Uq(ĝln). It is well known, however, that the
action of the central element c is trivial in finite-dimensional irreducible representations (see
e.g. [4, chapter 12]) so that our terminology should not bring an ambiguity.

The defining relations can easily be rewritten in terms of the generators. In particular, the
relations between the tij (u) take the form

(q−δik u − qδik v)tij (u)tkl(v) + (q−1 − q)(uδi>k + v δi<k)tkj (u)til(v)

= (q−δjl u − qδjl v)tkl(v)tij (u) + (q−1 − q)(uδj<l + v δj>l)tkj (v)til(u) (2.11)

where δi>k or δi<k is 1 if the inequality for the subscripts holds and 0 otherwise.
A family of the evaluation homomorphisms eva : Uq(ĝln) → Uq(gln) is defined by

T (u) �→ T − aT̄ u−1 T̄ (u) �→ T̄ − a−1T u (2.12)

where a is a nonzero complex number. Note that the R-matrix R(u, v) satisfies R(cu, cv) =
cR(u, v) for any nonzero c ∈ C . Therefore, the mapping

T (u) �→ T (cu) T̄ (u) �→ T̄ (cu) (2.13)

defines an automorphism of the algebra Uq(ĝln). Clearly, the homomorphism eva is the
composition of such an automorphism with c = a−1 and the evaluation homomorphism
ev = ev1 given by

T (u) �→ T − T̄ u−1 T̄ (u) �→ T̄ − T u. (2.14)

There is a Hopf algebra structure on Uq(ĝln) with the coproduct defined by

�(tij (u)) =
n∑

k=1

tik(u) ⊗ tkj (u) �(t̄ ij (u)) =
n∑

k=1

t̄ ik(u) ⊗ t̄ kj (u). (2.15)

Finite-dimensional irreducible representations of Uq(gln) are completely described by
their highest weights; see e.g. [4, chapter 10]. Let λ = (λ1, . . . , λn) be an n-tuple of integers
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with the condition λ1 � · · · � λn. We shall call such an n-tuple a gln-highest weight. The
finite-dimensional irreducible Uq(gln)-module L(λ) corresponding to the highest weight λ

contains a unique, up to a constant factor, vector ξ such that

tiξ = qλi ξ and eij ξ = 0 for i < j. (2.16)

Using the evaluation homomorphism (2.12) we can extend L(λ) to the quantum affine algebra
Uq(ĝln). We call such an extension the evaluation module and denote it by La(λ). In the
case a = 1 we keep the notation L(λ) for the evaluation module L1(λ). Coproduct (2.15)
allows us to form tensor product modules of the type La(λ)⊗Lb(µ) over the algebra Uq(ĝln).
Our main result is an irreducibility criterion of such modules. We note that without loss of
generality both evaluation parameters a and b can be taken to be equal to 1; see section 3
below. In order to formulate the result, we need the following definition [19]; cf [15]. Two
disjoint finite subsets A and B of Z are called crossing if there exist elements a1, a2 ∈ A and
b1, b2 ∈ B such that either a1 < b1 < a2 < b2 or b1 < a1 < b2 < a2. Otherwise, A and B are
called non-crossing. Given a highest weight λ with integer entries we set li = λi − i + 1 and
introduce the following subset of Z:

Aλ = {l1, l2, . . . , ln}.

Theorem 2.2. The Uq(ĝln)-module L(λ) ⊗ L(µ) is irreducible if and only if the sets Aλ\Aµ

and Aµ\Aλ are non-crossing.

The proof of this theorem will be given in the following sections. The first step is to
reduce the problem to the case of the standard Borel subalgebra of Uq(ĝln). We call this
subalgebra the q-Yangian and denote by Yq(gln); cf [21]. Then we develop an appropriate
q-version of the techniques of lowering operators and Gelfand–Tsetlin bases used in [19] for
the proof of such criterion in the Yangian case.

3. Evaluation modules over q-Yangians

We define the q-Yangian Yq(gln) as the (Hopf) subalgebra of Uq(ĝln) generated by the
elements t

(r)
ij with 1 � i, j � n and r � 0. The restriction of the evaluation homomorphism

(2.12) to the q-Yangian is given by the first formula in (2.12), or, equivalently, in terms of the
first presentation of Uq(gln), it can be written as

tii (u) �→ ti − a t−1
i u−1

tij (u) �→ (q − q−1)tj eij if i > j

tij (u) �→ a (q − q−1)eij t−1
i u−1 if i < j.

(3.1)

The highest weight of an arbitrary finite-dimensional irreducible representation L of
Uq(gln) may have a more general form than (2.16). Namely, if ξ is the highest vector of
L then

tiξ = αiξ and eij ξ = 0 for i < j (3.2)

for a collection (α1, . . . , αn) of nonzero complex numbers of the form

αi = hεi q
λi i = 1, . . . , n (3.3)

where h is a nonzero complex number, each εi is equal to 1 or −1, and the λi are integers
satisfying λi � λi+1 for all i. We denote the corresponding representation by L(h, ε, λ) where

ε = (ε1, . . . , εn) λ = (λ1, . . . , λn). (3.4)
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The evaluation homomorphism eva allows us to regard L(h, ε, λ) as a Yq(gln)-module which
we denote by La(h, ε, λ). Using coproduct (2.15) we can consider the tensor products of
the form

La(h, ε, λ) ⊗ La′(h′, ε′, λ′) (3.5)

as Yq(gln)-modules. It is clear that this Yq(gln)-module coincides with the restriction of (3.5)
regarded as a Uq(ĝln)-module.

Proposition 3.1. The Uq(ĝln)-module (3.5) is irreducible if and only if its restriction to the
q-Yangian Yq(gln) is irreducible.

Proof. The ‘if’ part is obviously true. Now suppose, on the contrary, that the Yq(gln)-module
(3.5) contains a nontrivial submodule W . Then, by (2.12) and (2.15), W is invariant with
respect to all operators of the form

n∑
k=1

(tik − t̄ iku
−1a) ⊗ (tkj − t̄ kj u

−1a′) i, j = 1, . . . , n. (3.6)

This implies that W is invariant with respect to the operators
n∑

k=1

(t̄ ik − tikua−1) ⊗ (t̄ kj − tkjua′−1). (3.7)

However, the latter operator is the image of the generator t̄ ij (u) of Uq(ĝln) in module (3.5).
Therefore, W is invariant under the action of the entire algebra Uq(ĝln). But this contradicts
the irreducibility of (3.5). �

Remark 3.2. Since every finite-dimensional irreducible representation V of Uq(ĝln) is
isomorphic to a subquotient of (1.2), the above argument can obviously be extended to show
that any such V remains irreducible when restricted to Yq(gln).

Proposition 3.1 tells us that the irreducibility conditions for tensor products of evaluation
modules over Uq(ĝln) and Yq(gln) are the same. In what follows we work with Yq(gln)-
modules. Finite-dimensional irreducible representations of Yq(gln) can be described in terms
of their highest weights in a way similar to the case of the Yangian Y(gln) [7]; see also
[4, chapter 12] and [18]. The highest weight of such a module L is a collection of formal
power series (ν1(u), . . . , νn(u)) in u−1 such that

tii (u)ζ = νi(u)ζ and tij (u)ζ = 0 for i < j (3.8)

for a vector ζ ∈ L (the highest vector) which is determined uniquely up to a constant factor. If
the Y(gln)-module (3.5) is irreducible its highest weight is easy to find from (2.15) and (3.1).
It is given by

νi(u) = (
αi − aα−1

i u−1
)(

α′
i − a′ α′−1

i u−1
)

(3.9)

where the αi and α′
i are the components of the highest weights of La(h, ε, λ) and La′(h′, ε′, λ′);

see (3.3). Note that for a given nondegenerate diagonal matrix D = diag(d1, . . . , dn), the
mapping

T (u) �→ DT (u) (3.10)

defines an algebra automorphism of Yq(gln), as follows from (2.11). Taking the composition
of (3.5) with this automorphism where di = h−1h′−1εiε

′
i we find that the irreducibility of (3.5)

is equivalent to that of the module

Lb(λ) ⊗ Lb′(λ′) b = ah−2 b′ = a′ h′−2 (3.11)
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where by L(λ) we denote the Uq(gln)-module L(h, ε, λ) with h = 1 and ε = (1, . . . , 1).
Similarly, using automorphism (2.13) we find that for any nonzero c ∈ C module (3.11) is
irreducible if and only if the module Lbc(λ) ⊗ Lb′c(λ

′) is. On the other hand, module (3.11)
is irreducible unless bb′−1 ∈ q2Z. Analogues of this fact are well known both in the case of
Yangians and the quantum affine algebras; cf [4, chapter 12]. One of the ways to prove this is
to show that both the module and its dual have no nontrivial singular vectors by considering
the eigenvalues of the quantum determinant on the module; see (4.20) below. So, we may
now assume that b′ = 1 and b = q2k in (3.11) for some k ∈ Z. However, using automorphism
(2.13) with di ≡ q−k we conclude that the irreducibility of (3.11) is equivalent to that of the
module L1(λ) ⊗ L1(λ

′ − kI) where I = (1, . . . , 1). We shall keep the notation L(λ) for the
Yq(gln)-module Lb(λ) with b = 1. Thus, we may only consider, without loss of generality,
the Yq(gln)-modules of the form L(λ) ⊗ L(µ). The irreducibility conditions for a general
tensor product module (3.5) can be easily obtained from theorem 2.2.

4. Quantum minor relations

Here we formulate some well-known properties of quantum determinants and quantum minors;
see e.g. [5, 21].

Let us consider the multiple tensor product Yq(gln)⊗(End C
n)⊗ r . We have the following

corollary of (2.9) which is verified in the same way as for the Yangians; cf [20]:

R(u1, . . . , ur)T1(u1) · · · Tr(ur) = Tr(ur) · · · T1(u1)R(u1, . . . , ur) (4.1)

where

R(u1, . . . , ur) =
∏
i<j

Rij (ui, uj ) (4.2)

with the product taken in the lexicographical order on the pairs (i, j). Here, like in (2.9),
the subscripts of the matrices T (u) and R(u, v) indicate the copies of End C

n. Consider the
q-permutation operator P ∈ End (Cn ⊗ C

n) defined by

P =
∑

i

Eii ⊗ Eii + q
∑
i>j

Eij ⊗ Eji + q−1
∑
i<j

Eij ⊗ Eji. (4.3)

An action of the symmetric group Sr on the space (Cn)⊗ r can be defined by setting
si �→ Psi

:= Pi,i+1 for i = 1, . . . , r − 1, where si denotes the transposition (i, i + 1). If
σ = si1 · · · sil is a reduced decomposition of an element σ ∈ Sr we set Pσ = Psi1

· · ·Psil
. We

denote by Ar the q-antisymmetrizer

Ar =
∑
σ∈Sr

sgn σ Pσ . (4.4)

The following proposition is proved by induction on r in the same way as for the Yangians
[20] with the use of a property of the reduced decompositions ([10], p 50).

Proposition 4.1. We have the relation in End (Cn)⊗ r :

R(1, q−2, . . . , q−2r+2) =
∏

0�i<j�r−1

(q−2i − q−2j )Ar . (4.5)

Now (4.1) implies that

ArT1(u) · · · Tr(q
−2r+2u) = Tr(q

−2r+2u) · · · T1(u)Ar (4.6)
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which equals ∑
ai ,bi

t
a1···ar

b1···br
(u) ⊗ Ea1b1 ⊗ · · · ⊗ Earbr

(4.7)

for some elements t
a1···ar

b1···br
(u) ∈ Yq(gln)[[u

−1]] which we call the quantum minors. They can
be given by the following formulae which are immediate from the definition. If a1 < · · · < ar

then

t
a1···ar

b1···br
(u) =

∑
σ∈Sr

(−q)−l(σ ) taσ(1)b1(u) · · · taσ(r)br
(q−2r+2u) (4.8)

and for any τ ∈ Sr we have

t
aτ(1)···aτ(r)

b1···br
(u) = (−q)l(τ )t

a1···ar

b1···br
(u). (4.9)

Here l(σ ) denotes the length of the permutation σ . If b1 < · · · < br (and the ai are arbitrary)
then

t
a1···ar

b1···br
(u) =

∑
σ∈Sr

(−q)l(σ ) tarbσ(r)
(q−2r+2u) · · · ta1bσ(1)

(u) (4.10)

and for any τ ∈ Sr we have

t
a1···ar

bτ(1)···bτ(r)
(u) = (−q)−l(τ )t

a1···ar

b1···br
(u). (4.11)

Note also that the quantum minor is zero if two top or two bottom indices are equal.
As another application of (4.1) we obtain the relations between the generators tij (u) and

the quantum minors. For this we introduce an extra copy of End C
n as a tensor factor which

will be enumerated by the index 0. Now specialize the parameters ui as follows:

u0 = u ui = q−2i+2v for i = 1, . . . , r. (4.12)

Then by proposition 4.1, element (4.2) will take the form

R(u, v, . . . , q−2r+2v) =
r∏

i=1

R0i (u, q−2i+2v)Ar . (4.13)

Using the definition of the quantum minors (4.7) and equating the matrix elements on both sides
of (4.1) we get the required relations. To write them down, let us fix indices a, b, c1 < · · · < cr

and d1 < · · · < dr . Then we have

Aa,b,(c),(d)(u, v) = Ba,b,(c),(d)(u, v) (4.14)

where

Aa,b,(c),(d)(u, v) = (u − v)tab(u)t
c1···cr

d1···dr
(v) + (q−1 − q)u

k∑
i=1

(−q)k−i tcib(u)t
c1···ĉi ···ckack+1···cr

d1···dr
(v)

+ (q−1 − q)v

r∑
i=k+1

(−q)k−i+1tcib(u)t
c1···ckack+1···ĉi ···cr

d1···dr
(v) (4.15)

if ck < a < ck+1 for some k ∈ {0, 1, . . . , r}, and

Aa,b,(c),(d)(u, v) = (q−1u − q v)tab(u)t
c1···cr

d1···dr
(v) (4.16)

if a = ck for some k. Furthermore,

Ba,b,(c),(d)(u, v) = (u − v)t
c1···cr

d1···dr
(v)tab(u) + (q−1 − q)v

l∑
i=1

(−q)i−l t
c1···cr

d1···d̂i ···dlbdl+1···dr
(v)tadl

(u)

+ (q−1 − q)u

r∑
i=l+1

(−q)i−l−1t
c1···cr

d1···dlbdl+1···d̂i ···dr
(v)tadl

(u) (4.17)
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if dl < b < dl+1 for some l ∈ {0, 1, . . . , r}, and

Ba,b,(c),(d)(u, v) = (q−1u − q v)t
c1···cr

d1···dr
(v)tab(u) (4.18)

if b = dl for some l; the hats indicate that the indices are omitted. In particular, (4.14) implies
the well-known property of the quantum minors: for any indices i, j we have[

tcidj
(u), t

c1···cr

d1···dr
(v)

] = 0. (4.19)

This implies that all the coefficients of the series

q det T (u) = t1···n
1···n (u) (4.20)

belong to the centre of Yq(gln). Element (4.20) is called the quantum determinant of the
matrix T (u). The quantum comatrix T̂ (u) is defined by the relation

T̂ (u)T (q−2n+2u) = q det T (u). (4.21)

Using definition (4.7) we find that T̂ (u) = ∑
i,j t̂ij (u) ⊗ Eij where

t̂ij (u) = (−q)j−i t
1···ĵ ···n
1···î···n (u). (4.22)

The elements t̂ ij (u) satisfy quadratic relations which can be written in the R-matrix form

R(u, v)T̂2(v)T̂1(u) = T̂1(u)T̂2(v)R(u, v). (4.23)

To see this, we multiply both sides of the first R-matrix relation in (2.9) by the product
T1(u)−1T2(v)−1 from the left and by T2(v)−1T1(u)−1 from the right. Then substitute
u �→ q−2n+2u, v �→ q−2n+2v and multiply both sides by q det T (u) q det T (v) to get (4.23). It
is easy to rewrite this relation in terms of t̂ij (u) in a way similar to (2.11). We shall also need
the following relation between the quantum minors.

Proposition 4.2. We have

t2···n
1···n−2,n(u)t2···n−1

2···n−1 (u) = t2···n−1
1···n−2 (u)t2···n

2···n (u) + qt2···n
1···n−1(u)t2···n−1

2···n−2,n(u). (4.24)

Proof. We find from the definition of the quantum determinant that

AnT1(u) · · · Tn−2(q
−2n+6u) = q det T (u)AnTn(q

−2n+2u)−1Tn−1(q
−2n+4u)−1. (4.25)

Equating the matrix elements of both sides and using (4.21) we arrive at the following relation:
for i < j and k < l,

(−q)i+j−k−l t
1···î···ĵ ···n
1···k̂···l̂···n (u) q det T (q2u) = t̂lj (u)t̂ki(q

2u) − q−1 t̂kj (u)t̂li (q
2u). (4.26)

The right-hand side is a 2 × 2-quantum minor of the matrix T̂ (u) and we denote it by t̂ kl
ij (u).

Furthermore, by analogy with (4.1) we obtain from (4.23)

R(u1, u2, u3)T̂3(u3)T̂2(u2)T̂1(u1) = T̂1(u1)T̂2(u2)T̂3(u3)R(u1, u2, u3). (4.27)

Now specialize u1 = q2v, u2 = v, u3 = u and take the coefficients at En−1,1 ⊗ Enn ⊗ E11 on
both sides. Using proposition 4.1 and (4.26) we get

(q−1 − q)vt̂n−1,1(u)t̂1n
1n (v) − (1 − q2)vt̂n1(u)t̂

1,n−1
1n (v) + (v − u)t̂11(u)t̂

n−1,n
1n (v)

= (q−1v − q u)t̂
n−1,n
1n (v)t̂11(u). (4.28)

By putting u = v and rewriting this relation in terms of quantum minors we come to (4.24).
�

The following proposition is proved in the same way as its Yangian counterpart [22]; see
also [20].
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Proposition 4.3. The images of the quantum minors under the coproduct are given by

�
(
t
a1···ar

b1···br
(u)

) =
∑

c1<···<cr

ta1···ar

c1···cr
(u) ⊗ t

c1···cr

b1···br
(u)

where the summation is over all subsets of indices {c1, . . . , cr} from {1, . . . , n}.

5. Gelfand–Tsetlin basis in L(λ)

It has been observed in [17] that the raising and lowering operators for the reduction gln ↓ gln−1
(and more generally for the corresponding Yangian reduction) can be given by quantum minor
formulae. This was used to construct analogues of the Gelfand–Tsetlin basis for generic
Yangian modules. Here we modify the arguments of [17] to give q-analogues of the quantum
minor formulae and construct a basis of Gelfand–Tsetlin-type for the Uq(gln)-module L(λ).
Some other constructions of such bases can be found in [12, 21, 26, 27].

A pattern � (associated with λ) is a sequence of rows of integers �n,�n−1, . . . , �1,
where �r = (λr1, . . . , λrr ) is the rth row from the bottom, the top row �n coincides with λ,
and the following betweenness conditions are satisfied: for r = 1, . . . , n − 1

λr+1,i+1 � λri � λr+1,i for i = 1, . . . , r. (5.1)

We shall be using the notation lki = λki − i + 1. Also, for any integer m we set

[m] = qm − q−m

q − q−1
. (5.2)

Proposition 5.1. There exists a basis {ξ�} in L(λ) parametrized by the patterns � such that
the action of the generators of Uq(gln) is given by

tkξ� = qwk ξ� wk =
k∑

i=1

λki −
k−1∑
i=1

λk−1,i (5.3)

ekξ� = −
k∑

j=1

[lk+1,1 − lkj ] · · · [lk+1,k+1 − lkj ]

[lk1 − lkj ] · · · ∧j · · · [lkk − lkj ]
ξ�+δkj

(5.4)

fkξ� =
k∑

j=1

[lk−1,1 − lkj ] · · · [lk−1,k−1 − lkj ]

[lk1 − lkj ] · · · ∧j · · · [lkk − lkj ]
ξ�−δkj

(5.5)

where � ± δkj is obtained from � by replacing the entry λkj with λkj ± 1, and ξ� is supposed
to be equal to zero if � is not a pattern; the symbol ∧j indicates that the jth factor is skipped.

Proof. Our proof of this result is based on the relations between the quantum minors given in
section 4. Set

Tij (u) = utij − u−1 t̄ ij

q − q−1
. (5.6)

Clearly, (q − q−1)Tij (u) = u ev(tij (u
2)); see (2.14). We also define the corresponding

quantum minors T
a1···ar

b1···br
(u) by formula (4.8) or (4.10) where all series tij (u) are respectively

replaced by Tij (u). Now for any 1 � a < r � n introduce the lowering operators by

τra(u) = qr−aT a+1···r
a···r−1(u). (5.7)
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Note that by (4.19) we have

τra(u)τsb(v) = τsb(v)τra(u) (5.8)

if b � a and s � r .
Let µ = (µ1, . . . , µn−1) be an (n − 1)-tuple of integers satisfying the inequalities

λi+1 � µi � λi i = 1, . . . , n − 1. (5.9)

Introduce the vector

ξµ =
n−1∏
a=1

τna(q
−µa−1) · · · τna(q

−λa+1)τna(q
−λa )ξ (5.10)

where ξ is the highest vector of L(λ). An easy induction with the use of (4.14) shows that ξµ

satisfies

ekξµ = 0 k = 1, . . . , n − 2 and tkξµ = qµk ξµ k = 1, . . . , n − 1.

(5.11)

Thus, if ξµ is nonzero then it generates a Uq(gln−1)-submodule isomorphic to L(µ). Now
given a pattern �, we define vectors ξ� ∈ L(λ) by

ξ� =
→∏

r=2,...,n

r−1∏
a=1

τra(q
−λr−1,a−1) · · · τra(q

−λra+1)τra(q
−λra )ξ. (5.12)

Relation (5.3) easily follows from (5.11) and the defining relations in Uq(gln). We now
derive formulae (5.4) and (5.5) which together with (5.3) will imply that the vectors ξ� are
linearly independent and form a nontrivial submodule of L(λ). Since L(λ) is irreducible this
submodule must coincide with L(λ). Below we shall only give a derivation of (5.4); the proof
of (5.5) is quite similar and will be omitted. Note first, that, as follows from (4.14), if k � r

then ek commutes with the lowering operator τra(u). Therefore, we only need to apply en−1 to
the vector ξµ defined in (5.10). Let a ∈ {1, . . . , n−1} be the least index such that λa −µa > 0.
We use a reverse induction on a with the trivial base a = n (i.e. ξµ = ξ ). For a nonnegative
integer m, we introduce the products of the lowering operators by

Tna(u,m) =
m∏

i=1

τna(q
i−1u). (5.13)

We then have

ξµ = Tna(q
−λa , λa − µa)ξµ′ (5.14)

where µ′ is obtained from µ by replacing µa with λa . We derive from (4.14) that

en−1τna(u) = q−1τna(u)en−1 − qn−a−1T a+1···n
a···n−2,n(u). (5.15)

Then by induction we obtain

en−1Tna(u,m) = q−mTna(u,m)en−1 −
m∑

i=1

qn−a−iτna(u) · · · T a+1···n
a···n−2,n(q

i−1u) · · · τna(q
m−1u).

(5.16)

Consider now the subalgebra Ya of Yq(gln) generated by the coefficients of tij (u) with
a � i, j � n. Using relations (4.23) for this subalgebra we get

T a+1···n
a···n−2,n(u)τna(qu) = qτna(u)T a+1···n

a···n−2,n(qu). (5.17)
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This brings (5.16) to the form

en−1Tna(u,m) = q−mTna(u,m)en−1 − [m]qn−a−1Tna(u,m − 1)T a+1···n
a···n−2,n(q

m−1u). (5.18)

By the induction hypothesis, the action of en−1 on ξµ′ is found from (5.4). So we only
need to calculate T a+1···n

a···n−2,n(u)ξµ′ at u = q−µa−1. For this we use proposition 4.2. Clearly,
relation (4.24) remains valid if we replace each quantum minor with the corresponding minor
in the elements Tij (u). By the induction hypothesis, we have

T a+1···n−1
a+1···n−1 (q−µa−1)ξµ′ =

n−1∏
i=a+1

[mi − ma]ξµ′ (5.19)

where mi = µi − i + 1. Similarly, since T a+1···n
a+1···n (u) commutes with the lowering operators

τnb(v), we obtain

T a+1···n
a+1···n (q−µa−1)ξµ′ =

n∏
i=a+1

[li − ma]ξµ′ . (5.20)

Moreover, by (4.14) we have

T a+1···n−1
a+1···n−2,n(u) = [

T a+1···n−1
a+1···n−1 (u), en−1

]
q

(5.21)

and so, the action of T a+1···n−1
a+1···n−2,n(q

−µa−1) on ξµ′ is also found by induction with the use of
(5.19). It is now a matter of a straightforward calculation to check that the resulting expression
for the matrix elements of en−1 agrees with (5.4). �

6. Proof of theorem 2.2

Here we outline the main arguments in the proof of theorem 2.2. They closely follow the proof
of its Yangian version of [19] with the use of the quantum minor relations given in section 4.
For a pair of indices i < j we shall denote

〈lj , li〉 = {lj , lj + 1, . . . , li}\{lj , lj−1, . . . , li}
〈mj,mi〉 = {mj,mj + 1, . . . , mi}\{mj,mj−1, . . . , mi}

(6.1)

where li = λi−i+1 and mi = µi−i+1. In particular, if λi = λi+1 = · · · = λj then 〈lj , li〉 = ∅.
It was shown in [19, proposition 2.8] that the condition of theorem 2.2 is equivalent to the
following: for all pairs of indices 1 � i < j � n we have

mj,mi �∈ 〈lj , li〉 or lj , li �∈ 〈mj,mi〉. (6.2)

We start by proving that these conditions are sufficient for the irreducibility of the Yq(gln)-
module L(λ) ⊗ L(µ). Let ξ and ξ ′ denote the highest vectors of the gln-modules L(λ) and
L(µ), respectively. The key part of the proof of sufficiency of the conditions is to show by
induction on n that if ζ ∈ L(λ) ⊗ L(µ) is a nonzero vector satisfying (3.8) for some series
νi(u) then

ζ = const ξ ⊗ ξ ′. (6.3)

Then considering dual modules we also show that the vector ξ ⊗ ξ ′ is cyclic.
Note that the modules L(λ) ⊗ L(µ) and L(µ) ⊗ L(λ) are simultaneously reducible or

irreducible. This can be easily deduced from formula (3.9) for the highest weight of the
irreducible module (3.5). So, we may assume without loss of generality that

m1,mn �∈ 〈ln, l1〉. (6.4)
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Consider the Gelfand–Tsetlin basis {ξ�} of the Uq(gln)-module L(λ); see section 5. The
singular vector ζ is uniquely written in the form

ζ =
∑
�

ξ� ⊗ η� (6.5)

summed over all patterns � associated with λ, and η� ∈ L(µ). We define the weight of a
pattern � as the n-tuple w(�) = (w1, . . . , wn) where the wk are given in (5.3). We use a
standard partial ordering on the weights such that w � w′ if and only if w′ − w is a Z+-
linear combination of the elements εi − εi+1, where εi is the n-tuple with 1 on the ith place
and zeros elsewhere. Choose a minimal pattern �0 with respect to this ordering among those
occurring in expansion (6.5). Then, exactly as in [19, lemmas 3.2 and 3.3], we show that η�0 is
proportional to the highest vector ξ ′ of L(µ) and that �0 is determined uniquely. Furthermore,
we apply proposition 5.1 to demonstrate that due to condition (6.4), the (n− 1)th row of �0 is
λ−:=(λ1, . . . , λn−1). This means that vector (6.5) belongs to the Yq(gln−1)-span of the vector
ξ ⊗ ξ ′, which is isomorphic to the tensor product L(λ−)⊗L(µ−). Since conditions (6.2) hold
for λ− and µ−, we conclude by induction that (6.3) holds.

The next step is to show that under conditions (6.2) (assuming (6.4) as well) the vector
ξ ⊗ ξ ′ of the Yq(gln)-module L = L(λ) ⊗ L(µ) is cyclic. The cyclicity of L is equivalent to
the cocyclicity of the dual module L∗ = L(λ)∗ ⊗ L(µ)∗ (that is, to the fact that any singular
vector of L∗ is proportional to ξ ∗ ⊗ ξ ′∗). To define the dual modules L(λ)∗ and L(µ)∗ we use
the anti-automorphism σ of Uq(gln) defined by

σ : ei �→ −ei σ : fi �→ −fi σ : ti �→ t−1
i . (6.6)

The dual space L(λ)∗ becomes a Uq(gln)-module if we set

(yf )(v) = f (σ(y)v) y ∈ Uq(gln) f ∈ L(λ)∗ v ∈ L(λ). (6.7)

It is easy to see that the Uq(gln)-module L(λ)∗ is isomorphic to L(−λω), where λω =
(λn, . . . , λ1), and so

L∗ � L(−λω) ⊗ L(−µω). (6.8)

Next we verify that if N is any submodule of L then its annihilator

Ann N = {f ∈ L∗ | f (v) = 0 for all v ∈ N}
is a nonzero submodule in L∗. The claim now follows from the fact that if ζ ′ is a lowest
singular vector of module (6.8) then ζ ′ is proportional to η ⊗ η′, where η and η′ are the lowest
vectors of L(λ) and L(µ), respectively. This is proved by repeating the above argument for
the singular vector ζ .

To prove the necessity of the conditions of the theorem we use induction on n again. It
is not difficult to see that if the Yq(gln)-module L(λ) ⊗ L(µ) is irreducible then so are the
Yq(gln−1)-modules L(λ1, . . . , λn−1)⊗L(µ1, . . . , µn−1) and L(λ2, . . . , λn)⊗L(µ2, . . . , µn).
Therefore, by the induction hypothesis, conditions (6.2) can only be violated for i = 1 and
j = n. Suppose this is the case. Swapping λ and µ if necessary, we may assume that
mn ∈ 〈ln, l1〉 and l1 ∈ 〈mn,m1〉. There are two cases. First,

mn ∈ 〈ln, ln−1〉 and l1 ∈ 〈m2,m1〉. (6.9)

Then there exist indices r and s such that

m2, . . . , mr ∈ {l2, . . . , ls} ls+1, . . . , ln−1 ∈ {mr+1, . . . , mn−1}.
In particular, this implies that

li − mi ∈ Z+ for all i = 2, . . . , n − 1. (6.10)
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The second case is

mn ∈ 〈lp+1, lp〉 and l1 ∈ 〈mn−p+1,mn−p〉 (6.11)

for some 1 � p � n − 2. Then lp−i+1 = mn−i for i = 1, . . . , p − 1.
We show that in both cases the module L(λ) ⊗ L(µ) contains a singular vector which is

not proportional to ξ ⊗ ξ ′. Indeed, recall that tij (u) acts in the tensor product as operator (3.6)
with a = a′ = 1. Therefore, the operator Tij (u) = u2tij (u

2) in L(λ) ⊗ L(µ) is polynomial
in u. By analogy with (5.7), we introduce the lowering operators

τra(u) = T a+1···r
a···r−1(u) (6.12)

and their products

Tna(u, k) =
k∏

i=1

τna(q
i−1u) (6.13)

where k is a nonnegative integer. The numbers

ki = li − mn−p+i i = 1, . . . , p

are positive integers and we define the vector θ ∈ L(λ) ⊗ L(µ) by

θ = Tn−p+1,1(q
−λ1 , k1)T ′

n−p+2,2(q
−λ2 , k2) · · · T ′

np(q−λp , kp)(ξ ⊗ ξ ′)

where T ′
na(u, k) is the derivative of the polynomial Tna(u, k). We need to prove that θ is

annihilated by all operators Tij (u) with i < j . It suffices to show that

T 1···k
1···k−1,k+1(u)θ = 0 k = 1, . . . , n − 1. (6.14)

Note that by (4.14) we have

T 1···k
1···k−1,k+1(u) = [

T 1···k
1···k (u), ek

]
q
. (6.15)

Since the element t1···k
1···k (u) is central in the subalgebra of Yq(gln) generated by tij (u) with

1 � i, j � k the calculation is essentially reduced to showing that ekθ = 0 for all k. The
action of ek on θ is found by a modified version of the argument which we used in the derivation
of (5.4); cf [19, lemma 4.6].

Finally, to prove that θ �= 0 we write it as a linear combination

θ =
∑
�,M

c�,Mξ� ⊗ ξ ′
M (6.16)

where ξ� and ξ ′
M are the Gelfand–Tsetlin basis vectors in L(λ) and L(µ). Applying

proposition 4.3 we show that (6.16) has the form

θ = cξ� ⊗ ξ ′ + · · · (6.17)

where c is a nonzero constant and

ξ� = Tn−p+1,1(q
−λ1 , k1)Tn−p+2,2(q

−λ2 , k2) · · · Tnp(q−λp , kp)ξ (6.18)

is a vector of the Gelfand–Tsetlin basis of L(λ); see (5.12). Thus, θ �= 0 which completes the
proof of theorem 2.2.
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[6] Ding J 1999 Spinor representations of Uq(ĝl(n)) and quantum boson–fermion correspondence Commun. Math.

Phys. 200 399–420
[7] Drinfeld V G 1988 A new realization of Yangians and quantized affine algebras Sov. Math. Dokl. 36 212–6
[8] Frenkel E and Mukhin E 2001 Combinatorics of q-characters of finite-dimensional representations of quantum

affine algebras Commun. Math. Phys. 216 23–57
[9] Frenkel E and Mukhin E 2002 The Hopf algebra Rep Uq ĝl∞ Sel. Math. (NS) 8 537–635

[10] Humphreys J E 1972 Introduction to Lie algebras and Representation Theory (New York: Springer)
[11] Jimbo M 1986 A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang–Baxter equation Lett. Math. Phys.

11 247–52
[12] Jimbo M 1986 Quantum R-matrix for the generalized Toda system Commun. Math. Phys. 102 537–47
[13] Kashiwara M 2002 On level-zero representation of quantized affine algebras Duke Math. J. 112 117–95
[14] Kitanine N, Maillet J-M and Terras V 1999 Form factors of the XXZ Heisenberg spin- 1

2 finite chain Nucl. Phys.
B 554 647–78

[15] Leclerc B, Nazarov M and Thibon J-Y 2003 Induced representations of affine Hecke algebras and the canonical
bases for quantum groups Studies in Memory of Issai Schur (Progr. in Math. vol. 210) (Basle: Birkhauser)
pp 115–53

[16] Maillet J M and Terras V 2000 On the quantum inverse scattering problem Nucl. Phys. B 575 627–44
[17] Molev A I 1994 Gelfand–Tsetlin basis for representations of Yangians Lett. Math. Phys. 30 53–60
[18] Molev A I 1998 Finite-dimensional irreducible representations of twisted Yangians J. Math. Phys. 39 5559–600
[19] Molev A I 2002 Irreducibility criterion for tensor products of Yangian evaluation modules Duke Math. J. 112

307–41
[20] Molev A, Nazarov M and Olshanski G 1996 Yangians and classical Lie algebras Russ. Math. Surv. 51 205–82
[21] Nazarov M and Tarasov V 1994 Yangians and Gelfand–Zetlin bases Publ. RIMS, Kyoto Univ. 30 459–78
[22] Nazarov M and Tarasov V 1998 Representations of Yangians with Gelfand–Zetlin bases J. Reine Angew. Math.

496 181–212
[23] Nazarov M and Tarasov V 1998 On irreducibility of tensor products of Yangian modules Int. Math. Res. Not.

125–50
[24] Nazarov M and Tarasov V 2002 On irreducibility of tensor products of Yangian modules associated with skew

Young diagrams Duke Math. J. 112 343–78
[25] Reshetikhin N Yu, Takhtajan L A and Faddeev L D 1990 Quantization of Lie groups and Lie algebras Leningr.

Math. J. 1 193–225
[26] Tolstoy V N 1990 Extremal projectors for quantized Kac-Moody superalgebras and some of their applications

Quantum Groups (Clausthal, 1989) (Lect. Notes Phys. vol. 370) (Berlin: Springer) 118–25
[27] Ueno K, Takebayashi T and Shibukawa Y 1989 Gelfand–Zetlin basis for Uq(gl(N + 1))-modules Lett. Math.

Phys. 18 215–21
[28] Varagnolo M 2000 Quiver varieties and Yangians Lett. Math. Phys. 53 273–83
[29] Varagnolo M and Vasserot E 2002 Standard modules of quantum affine algebras Duke Math. J. 111 509–33


